" BP神经网络pid算法的完整代码较长,这里我给出一个简化版的代码框架,您可以根据需要进行扩展和修改。这个框架包含了神经网络的基本结构、训练过程以及用于PID控制的输出计算。
```c
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
// 定义神经网络结构
typedef struct {
int input_size;
int hidden_size;
int output_size;
double *input_layer;
double *hidden_layer;
double *output_layer;
double *weights_input_hidden;
double *weights_hidden_output;
double *bias_hidden;
double *bias_output;
} NeuralNetwork;
// 初始化神经网络
void init_network(NeuralNetwork *nn, int input_size, int hidden_size, int output_size) {
nn->input_size = input_size;
nn->hidden_size = hidden_size;
nn->output_size = output_size;
nn->input_layer = (double *)malloc(input_size * sizeof(double));
nn->hidden_layer = (double *)malloc(hidden_size * sizeof(double));
nn->output_layer = (double *)malloc(output_size * sizeof(double));
nn->weights_input_hidden = (double *)malloc(input_size * hidden_size * sizeof(double));
nn->weights_hidden_output = (double *)malloc(hidden_size * output_size * sizeof(double));
nn->bias_hidden = (double *)malloc(hidden_size * sizeof(double));
nn->bias_output = (double *)malloc(output_size * sizeof(double));
}
// 激活函数
double activation(double x) {
return 1.0 / (1.0 + exp(-x));
}
// 激活函数的导数
double activation_derivative(double x) {
return x * (1.0 - x);
}
// 前向传播
void forward_propagation(NeuralNetwork *nn, double *input) {
for (int i = 0; i < nn->input_size; i++) {
nn->input_layer[i] = input[i];
}
for (int i = 0; i < nn->hidden_size; i++) {
nn->hidden_layer[i] = 0.0;
for (int j = 0; j < nn->input_size; j++) {
nn->hidden_layer[i] += nn->input_layer[j] * nn->weights_input_hidden[i * nn->input_size + j];
}
nn->hidden_layer[i] += nn->bias_hidden[i];
nn->hidden_layer[i] = activation(nn->hidden_layer[i]);
}
for (int i = 0; i < nn->output_size; i++) {
nn->output_layer[i] = 0.0;
for (int j = 0; j < nn->hidden_size; j++) {
nn->output_layer[i] += nn->hidden_layer[j] * nn->weights_hidden_output[i * nn->hidden_size + j];
}
nn->output_layer[i] += nn->bias_output[i];
nn->output_layer[i] = activation(nn->output_layer[i]);
}
}
// 反向传播
void back_propagation(NeuralNetwork *nn, double *target, double learning_rate) {
double *error_output = (double *)malloc(nn->output_size * sizeof(double));
double *error_hidden = (double *)malloc(nn->hidden_size * sizeof(double));
for (int i = 0; i < nn->output_size; i++) {
error_output[i] = (target[i] - nn->output_layer[i]) * activation_derivative(nn->output_layer[i]);
}
for (int i = 0; i < nn->hidden_size; i++) {
error_hidden[i] = 0.0;
"